Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.261
Filtrar
1.
Front Neural Circuits ; 18: 1385908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590628

RESUMO

Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.


Assuntos
Hipotálamo , Núcleo Supraquiasmático , Animais , Núcleo Supraquiasmático/metabolismo , Hipotálamo/metabolismo , Ritmo Circadiano/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Sono , Arginina Vasopressina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(17): e2316646121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625943

RESUMO

Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.


Assuntos
Ritmo Circadiano , Proteínas Circadianas Period , Animais , Ritmo Circadiano/fisiologia , Temperatura , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , RNA/metabolismo , Núcleo Supraquiasmático/metabolismo , Mamíferos/genética
3.
Cell Rep ; 43(3): 113951, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38508192

RESUMO

Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice. Rhythmic gene expression across tissues comprised different sets of genes with minimal overlap between nocturnal and diurnal mice. We show that non-clock genes in the suprachiasmatic nucleus (SCN) change, and the habenula was most affected. Our results indicate that adaptive flexibility in daily timing of behavior is supported by gene expression dynamics in many tissues and brain regions, especially in the habenula, which suggests a crucial role for the observed nocturnal-diurnal switch.


Assuntos
Ritmo Circadiano , Transcriptoma , Camundongos , Masculino , Animais , Ritmo Circadiano/genética , Transcriptoma/genética , Camundongos Endogâmicos CBA , Encéfalo , Núcleo Supraquiasmático/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(13): e2316841121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502706

RESUMO

We show that nocturnal aversive stimuli presented to mice while they are eating and drinking outside of their safe nest can entrain circadian behaviors, leading to a shift toward daytime activity. We also show that the canonical molecular circadian clock is necessary for fear entrainment and that an intact molecular clockwork in the suprachiasmatic nucleus, the site of the central circadian pacemaker, is necessary but not sufficient to sustain fear entrainment of circadian rhythms. Our results demonstrate that entrainment of a circadian clock by cyclic fearful stimuli can lead to severely mistimed circadian behavior that persists even after the aversive stimulus is removed. Together, our findings support the interpretation that circadian and sleep symptoms associated with fear and anxiety disorders are, in part, the output of a fear-entrained clock, and provide a mechanistic insight into this clock.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Núcleo Supraquiasmático , Ritmo Circadiano , Medo
5.
Physiol Behav ; 279: 114523, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492912

RESUMO

Melatonin is a neurohormone synthesized by the pineal gland to regulate the circadian rhythms and has proven to be effective in treating drug addiction and dependence. However, the effects of melatonin to modulate the drug-seeking behavior of fentanyl and its underlying molecular mechanism is elusive. This study was designed to investigate the effects of melatonin on fentanyl - induced behavioral sensitization and circadian rhythm disorders in mice. The accompanying changes in the expression of Brain and Muscle Arnt-Like (BMAL1), tyrosine hydroxylase (TH), and monoamine oxidase A (MAO-A) in relevant brain regions including the suprachiasmatic nucleus (SCN), nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus (Hip) were investigated by western blot assays to dissect the mechanism by which melatonin modulates fentanyl - induced behavioral sensitization and circadian rhythm disorders. The present study suggest that fentanyl (0.05, 0.1 and 0.2 mg/kg) could induce behavioral sensitization and melatonin (30.0 mg/kg) could attenuate the behavioral sensitization and circadian rhythm disorders in mice. Fentanyl treatment reduced the expression of BMAL1 and MAO-A and increased that of TH in relevant brain regions. Furthermore, melatonin treatment could reverse the expression levels of BMAL1, MAO-A, and TH. In conclusion, our study demonstrate for the first time that melatonin has therapeutic potential for fentanyl addiction.


Assuntos
Transtornos Cronobiológicos , Melatonina , Camundongos , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Fatores de Transcrição ARNTL , Fentanila/farmacologia , Fentanila/uso terapêutico , Fentanila/metabolismo , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/fisiologia , Transtornos Cronobiológicos/metabolismo , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia
6.
J Biol Rhythms ; 39(2): 135-165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366616

RESUMO

It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.


Assuntos
Ritmo Circadiano , Neuropeptídeos , Ritmo Circadiano/fisiologia , Neuropeptídeos/metabolismo , Núcleo Supraquiasmático/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Liberador de Gastrina/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339119

RESUMO

Prostaglandins are bioactive compounds, and the activation of their receptors affects the expression of clock genes. However, the prostaglandin F receptor (Ptgfr) has no known relationship with biological rhythms. Here, we first measured the locomotor period lengths of Ptgfr-KO (B6.129-Ptgfrtm1Sna) mice and found that they were longer under constant dark conditions (DD) than those of wild-type (C57BL/6J) mice. We then investigated the clock gene patterns within the suprachiasmatic nucleus in Ptgfr-KO mice under DD and observed a decrease in the expression of the clock gene cryptochrome 1 (Cry1), which is related to the circadian cycle. Moreover, the expression of Cry1, Cry2, and Period2 (Per2) mRNA were significantly altered in the mouse liver in Ptgfr-KO mice under DD. In the wild-type mouse, the plasma prostaglandin F2α (PGF2α) levels showed a circadian rhythm under a 12 h cycle of light-dark conditions. In addition, in vitro experiments showed that the addition of PTGFR agonists altered the amplitude of Per2::luc activity, and this alteration differed with the timing of the agonist addition. These results lead us to hypothesize that the plasma rhythm of PGF2α is important for driving clock genes, thus suggesting the involvement of PGF2α- and Ptgfr-targeting drugs in the biological clock cycle.


Assuntos
Ritmo Circadiano , Dinoprosta , Camundongos , Animais , Dinoprosta/metabolismo , Camundongos Endogâmicos C57BL , Ritmo Circadiano/genética , Relógios Biológicos , Núcleo Supraquiasmático/metabolismo , Expressão Gênica , Criptocromos/genética , Criptocromos/metabolismo
8.
Cephalalgia ; 44(2): 3331024231209317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415635

RESUMO

BACKGROUND: Despite advances in neuroimaging and electrophysiology, cluster headache's pathogenesis remains unclear. This review will examine clinical neurophysiology studies, including electrophysiological and functional neuroimaging, to determine if they might help us construct a neurophysiological model of cluster headache. RESULTS: Clinical, biochemical, and electrophysiological research have implicated the trigeminal-parasympathetic system in cluster headache pain generation, although the order in which these two systems are activated, which may be somewhat independent, is unknown. Electrophysiology and neuroimaging have found one or more central factors that may cause seasonal and circadian attacks. The well-known posterior hypothalamus, with its primary circadian pacemaker suprachiasmatic nucleus, the brainstem monoaminergic systems, the midbrain, with an emphasis on the dopaminergic system, especially when cluster headache is chronic, and the descending pain control systems appear to be involved. Functional connection investigations have verified electrophysiological evidence of functional changes in distant brain regions connecting to wide cerebral networks other than pain. CONCLUSION: We propose that under the impact of external time, an inherited misalignment between the primary circadian pacemaker suprachiasmatic nucleus and other secondary extra- suprachiasmatic nucleus clocks may promote disturbance of the body's internal physiological clock, lowering the threshold for bout recurrence.


Assuntos
Cefaleia Histamínica , Humanos , Núcleo Supraquiasmático , Dor , Encéfalo , Tronco Encefálico
9.
Eur J Neurosci ; 59(7): 1723-1742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326974

RESUMO

The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERß (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERß-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.


Assuntos
Conexina 43 , Receptor beta de Estrogênio , Animais , Feminino , Conexina 43/metabolismo , Receptor beta de Estrogênio/metabolismo , Núcleo Supraquiasmático/fisiologia , Ritmo Circadiano/fisiologia , Junções Comunicantes/metabolismo , Conexinas/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Estrogênios/farmacologia , Mamíferos/metabolismo
10.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38238074

RESUMO

The suprachiasmatic nucleus (SCN) is the central clock for circadian rhythms. Animal studies have revealed daily rhythms in the neuronal activity in the SCN. However, the circadian activity of the human SCN has remained elusive. In this study, to reveal the diurnal variation of the SCN activity in humans, we localized the SCN by employing an areal boundary mapping technique to resting-state functional images and investigated the SCN activity using perfusion imaging. In the first experiment (n = 27, including both sexes), we scanned each participant four times a day, every 6 h. Higher activity was observed at noon, while lower activity was recorded in the early morning. In the second experiment (n = 20, including both sexes), the SCN activity was measured every 30 min for 6 h from midnight to dawn. The results showed that the SCN activity gradually decreased and was not associated with the electroencephalography. Furthermore, the SCN activity was compatible with the rodent SCN activity after switching off the lights. These results suggest that the diurnal variation of the human SCN follows the zeitgeber cycles of nocturnal and diurnal mammals and is modulated by physical lights rather than the local time.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Masculino , Animais , Feminino , Humanos , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Roedores , Mamíferos , Neurônios
11.
Neuroreport ; 35(4): 233-241, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38251445

RESUMO

Major depressive disorder (MDD) ranks among the top 10 leading causes of death. However, exercise is known to improve depressive symptoms but the mechanism responsible is still unknown. To date, numerous studies have shown that molecular rhythms and exercise are associated with MDD. Thus, we hypothesized that exercise could affect the expression of central nervous system clock genes to improve depressive symptoms. Ninety adult male Sprague-Dawley rats (250 g) were divided into a control Normal Group, an unpredictable chronic mild stress (CMS) treated CMS Group and an Exercise Group, which was intervened by a moderate-intensity exercise training on a treadmill at 2 p.m. every day for 4 weeks after CMS treatment. The open field test, elevated plus maze and forced swim test were employed to test mood-related behaviors. The telemetry recording method recorded voluntary locomotor activity and core body temperature. Expression of core clock genes in the suprachiasmatic nucleus (SCN) was tested by qRT-PCR. Compared with the CMS Group, depressive symptoms were improved in the Exercise Group ( P  < 0.05). Moreover, the periodic changes of molecular rhythms in the Exercise Group were close to those of rats in Normal Group. Next, exercise increased oscillations of expression of core clock genes in SCN after CMS treatment, and the amplitudes of core clock gene expression oscillations were negatively correlated with depressive-like behavior. Our findings suggested that exercise could change the expressions of central clock genes in MDD animals, and this effect was positively correlated with the improvement of depressive symptoms by exercise.


Assuntos
Depressão , Transtorno Depressivo Maior , Ratos , Masculino , Animais , Depressão/metabolismo , Ratos Sprague-Dawley , Núcleo Supraquiasmático/metabolismo , Exercício Físico , Modelos Animais de Doenças
12.
Mol Neurodegener ; 19(1): 4, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195580

RESUMO

Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Neuroglia , Núcleo Supraquiasmático , Modelos Animais
13.
Int J Biol Sci ; 20(2): 403-413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169640

RESUMO

Rhythmicity of the circadian system is a 24-hour period, driven by transcription-translation feedback loops of circadian clock genes. The central circadian pacemaker in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), which controls peripheral circadian clocks. In general, most physiological processes are regulated by the circadian system, which is modulated by environmental cues such as exposure to light and/or dark, temperature, and the timing of sleep/wake and food intake. The chronic circadian disruption caused by shift work, jetlag, and/or irregular sleep-wake cycles has long-term health consequences. Its dysregulation contributes to the risk of psychiatric disorders, sleep abnormalities, hypothyroidism and hyperthyroidism, cancer, and obesity. A number of neurological conditions may be worsened by changes in the circadian clock via the SCN pacemaker. For stroke, different physiological activities such as sleep/wake cycles are disrupted due to alterations in circadian rhythms. Moreover, the immunological processes that affect the evolution and recovery processes of stroke are regulated by the circadian clock or core-clock genes. Thus, disrupted circadian rhythms may increase the severity and consequences of stroke, while readjustment of circadian clock machinery may accelerate recovery from stroke. In this manuscript, we discuss the relationship between stroke and circadian rhythms, particularly on stroke development and its recovery process. We focus on immunological and/or molecular processes linking stroke and the circadian system and suggest the circadian rhythm as a target for designing effective therapeutic strategies in stroke.


Assuntos
Relógios Circadianos , Acidente Vascular Cerebral , Animais , Humanos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Núcleo Supraquiasmático , Sono , Mamíferos
14.
Sci China Life Sci ; 67(3): 518-528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38057622

RESUMO

The circadian clock coordinates rhythms in numerous physiological processes to maintain organismal homeostasis. Since the suprachiasmatic nucleus (SCN) is widely accepted as the circadian pacemaker, it is critical to understand the neural mechanisms by which rhythmic information is transferred from the SCN to peripheral clocks. Here, we present the first comprehensive map of SCN efferent connections and suggest a molecular logic underlying these projections. The SCN projects broadly to most major regions of the brain, rather than solely to the hypothalamus and thalamus. The efferent projections from different subtypes of SCN neurons vary in distance and intensity, and blocking synaptic transmission of these circuits affects circadian rhythms in locomotion and feeding to different extents. We also developed a barcoding system to integrate retrograde tracing with in-situ sequencing, allowing us to link circuit anatomy and spatial patterns of gene expression. Analyses using this system revealed that brain regions functioning downstream of the SCN receive input from multiple neuropeptidergic cell types within the SCN, and that individual SCN neurons generally project to a single downstream brain region. This map of SCN efferent connections provides a critical foundation for future investigations into the neural circuits underlying SCN-mediated rhythms in physiology. Further, our new barcoded tracing method provides a tool for revealing the molecular logic of neuronal circuits within heterogeneous brain regions.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/genética , Hipotálamo , Neurônios/fisiologia , Transmissão Sináptica
15.
Nat Neurosci ; 27(1): 102-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957320

RESUMO

Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a 'deprivation counter', AgRP-neuron activity primarily followed the circadian rest-activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time.


Assuntos
Neurônios , Núcleo Supraquiasmático , Animais , Camundongos , Proteína Relacionada com Agouti , Comportamento Alimentar/fisiologia , Neurônios/fisiologia
16.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 245-254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36811711

RESUMO

The importance of the suprachiasmatic nucleus (SCN, also called the master circadian clock) in regulating sleep and wakefulness has been confirmed by multiple animal research. However, human studies of SCN in vivo are still nascent. Recently, the development of resting-state functional magnetic resonance imaging (fMRI) has made it possible to study SCN-related connectivity changes in patients with chronic insomnia disorder (CID). Hence, this study aimed to explore whether sleep-wake circuitry (i.e., communication between the SCN and other brain regions) is disrupted in human insomnia. Forty-two patients with CID and 37 healthy controls (HCs) underwent fMRI scanning. Resting-state functional connectivity (rsFC) and Granger causality analysis (GCA) were performed to find abnormal functional and causal connectivity of the SCN in CID patients. In addition, correlation analyses were conducted to detect associations between features of disrupted connectivity and clinical symptoms. Compared to HCs, CID patients showed enhanced rsFC of the SCN-left dorsolateral prefrontal cortex (DLPFC), as well as reduced rsFC of the SCN-bilateral medial prefrontal cortex (MPFC); these altered cortical regions belong to the "top-down" circuit. Moreover, CID patients exhibited disrupted functional and causal connectivity between the SCN and the locus coeruleus (LC) and the raphe nucleus (RN); these altered subcortical regions constitute the "bottom-up" pathway. Importantly, the decreased causal connectivity from the LC-to-SCN was associated with the duration of disease in CID patients. These findings suggest that the disruption of the SCN-centered "top-down" cognitive process and "bottom-up" wake-promoting pathway may be intimately tied to the neuropathology of CID.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Animais , Humanos , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Núcleo Supraquiasmático , Encéfalo , Córtex Pré-Frontal/patologia , Imageamento por Ressonância Magnética/métodos
17.
Trends Neurosci ; 47(1): 36-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071123

RESUMO

The 24 h (circadian) timing system develops in mammals during the perinatal period. It carries out the essential task of anticipating daily recurring environmental changes to identify the best time of day for each molecular, cellular, and systemic process. Although significant knowledge has been acquired about the organization and function of the adult circadian system, relatively little is known about its ontogeny. During the perinatal period, the circadian system progressively gains functionality under the influence of the early environment. This review explores current evidence on the development of the circadian clock in mammals, highlighting the multilevel complexity of the process and the importance of gaining a better understanding of its underlying biology.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Animais , Gravidez , Feminino , Núcleo Supraquiasmático , Mamíferos
18.
Brain Res ; 1826: 148739, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157956

RESUMO

Adar2-/- mice are a widely used model for studying the physiological consequences of reduced RNA editing. These mice are viable only when the Q/R editing site of the Gria2 subunit of the AMPA receptor is constitutively mutated to the codon for arginine, and Gria2R/R mice often serve as the sole control for Adar2-/- mice. Our study aimed to investigate whether ADAR2 inactivity and the Gria2R/R phenotype affect the rhythmicity of the circadian clock gene pattern and the expression of Gria1 and Gria2 subunits in the suprachiasmatic nucleus (SCN), hippocampus, parietal cortex and liver. Our data show that Gria2R/R mice completely lost circadian rhythmicity in the hippocampus compared to Adar2-/- mice. Compared to C57BL/6J mice, the expression profiles in the hippocampus and parietal cortex of Gria2R/R mice differ to the same extent as in Adar2-/-. No alterations were detected in the circadian profiles in the livers. These data suggest that the natural gradual postnatal increase in the editing of the Q/R site of the Gria2 subunit may be important for the development of circadian clockwork in some brain structures, and the use of Gria2R/R mice as the only control to Adar2-/- mice in the experiments dependent on the hippocampus and parietal cortex should therefore be considered.


Assuntos
Encéfalo , Ritmo Circadiano , Animais , Camundongos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Encéfalo/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/metabolismo
19.
FASEB J ; 38(1): e23348, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084798

RESUMO

A robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases. Strengthening clock function would therefore be an effective strategy to improve health. A high-throughput chemical screening has identified clock-enhancing molecule 3 (CEM3) as small molecule that increases circadian rhythm amplitude in cell lines and SCN explants. It is, however, currently not known whether CEM3 acts by enhancing the amplitude of individual single-cell oscillators or by enhancing synchrony among neurons. In view of CEM3's potential, it is of evident importance to clarify the mode of action of CEM3. Here, we investigated the effects of CEM3 on single-cell PERIOD2::LUCIFERASE rhythms in mouse SCN explants. CEM3 increased the amplitude in approximately 80%-90% of the individual cells in the SCN without disrupting the phase and/or period of their rhythms. Noticeably, CEM3's effect on amplitude is independent of the cell's initial amplitude. These findings make CEM3 a potential therapeutic candidate to restore compromised amplitude in circadian rhythms and will boost the development of other molecular approaches to improve health.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos , Animais , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Relógios Circadianos/fisiologia , Luciferases/metabolismo , Neurônios/metabolismo
20.
PLoS Biol ; 21(12): e3002412, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048352

RESUMO

Visual system function depends upon the elaboration of precise connections between retinal ganglion cell (RGC) axons and their central targets in the brain. Though some progress has been made in defining the molecules that regulate RGC connectivity required for the assembly and function of image-forming circuitry, surprisingly little is known about factors required for intrinsically photosensitive RGCs (ipRGCs) to target a principal component of the non-image-forming circuitry: the suprachiasmatic nucleus (SCN). Furthermore, the molecules required for forming circuits critical for circadian behaviors within the SCN are not known. We observe here that the adhesion molecule teneurin-3 (Tenm3) is highly expressed in vasoactive intestinal peptide (VIP) neurons located in the core region of the SCN. Since Tenm3 is required for other aspects of mammalian visual system development, we investigate roles for Tenm3 in regulating ipRGC-SCN connectivity and function. Our results show that Tenm3 negatively regulates association between VIP and arginine vasopressin (AVP) neurons within the SCN and is essential for M1 ipRGC axon innervation to the SCN. Specifically, in Tenm3-/- mice, we find a reduction in ventro-medial innervation to the SCN. Despite this reduction, Tenm3-/- mice have higher sensitivity to light and faster re-entrainment to phase advances, probably due to the increased association between VIP and AVP neurons. These data show that Tenm3 plays key roles in elaborating non-image-forming visual system circuitry and that it influences murine responses to phase-advancing light stimuli.


Assuntos
Axônios , Células Ganglionares da Retina , Animais , Camundongos , Axônios/metabolismo , Ritmo Circadiano/fisiologia , Mamíferos/metabolismo , Células Ganglionares da Retina/fisiologia , Núcleo Supraquiasmático/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...